Abstract
The spectral changes of hydrogenated amorphous carbon (HAC) could show variable distributions of solid carbon abundance in the interstellar medium (ISM). The variable optical properties of HAC analogs, produced by the laser ablation in a high vacuum, depends on the variation in its atomic and electronic structures. The fraction of hydrogen atoms in HAC increases proportionally with the laser’s power. The available solid carbon tied up in the interstellar HAC, being the carrier of the interstellar 3.4μm and 4.6μm−1 bands, is indicated by the strength of these bands. Comparing the strength of these bands with those of laboratory data indicates that the amount of carbon in HAC analogs is not inherently sufficient. The lack in the solid carbon (locked solid carbon) in these analogs can be analytically estimated to facilitate the simulation of cosmic carbon dust. The results show a reduction in the locked solid carbon when the fraction of hydrogen atoms in HAC analogs increases. When this fraction becomes approximately 0.52 relative to the total number of hydrogen and carbon atoms, there is no lack of carbon in HAC analogs. The interstellar distribution of variable solid carbon abundance is attributed to the modification of cosmic HAC, which occurs as a result of the variation in its hydrogen atom fraction and the UV processing taking place in the interstellar environments. This distribution reveals more solid carbon abundances reside in the dust phase and may assist in resolving the carbon crisis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Advances in Space Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.