Abstract

Hydroboration of CO2 to formoxy borane occurs under ambient conditions in acetonitrile using pinacolborane HBpin in the presence of gallium(I) cation [(Me4TACD)Ga][BAr4] (1; Me4TACD = N,N',N″,N'''-tetramethyl-1,4,7,10-tetraazacyclododecane; Ar = C6H3-3,5-Me2). Slow turnover was accompanied by side reactions including ligand scrambling of HBpin to give BH3(CH3CN) and crystalline B2pin3. When 1 was reacted with CO2 alone, the formation of the gallium(III) carbonato complex [(Me4TACD)Ga(κ2-O2CO)][BAr4] (3) along with CO was observed. This complex was assumed to form via the unstable oxido cation [(Me4TACD)Ga=O]+ (4). Reaction of 1 with N2O in the presence of BPh3 confirmed the formation of the oxido cation, which was spectroscopically characterized as a triphenylborane adduct [(Me4TACD)Ga=O(BPh3)][BAr4] (4·BPh3). CO was also detected when CO2 was reacted with 1 in the presence of HBpin, suggesting that compound 3 may also be formed in initial stages of catalysis. Compound 3 reacts with HBpin to give formoxy borane, borane redistribution products, and an unidentified Me4TACD-containing species 5, which was also observed in "catalytic" runs starting from 1, HBpin, and CO2. Hydroboration of CO2 using HBpin with slow turnover and competitive ligand scrambling was also observed in the presence of gallium(III) hydride dication [(Me4TACD)GaH][BAr4]2 (2), which is unreactive toward CO2 in the absence of HBpin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call