Abstract
Treatment of diphenyl-di(phenylethynyl)germane with two equivalents of di(tert-butyl)aluminum hydride afforded the corresponding dialkenyl derivative, Ph2Ge[C(AltBu2)C(H)–Ph]2 (1) by dual hydroalumination. The aluminum atoms of 1 are attached to the carbon atoms in α-position to germanium. They are coordinatively unsaturated and are able to act as chelating Lewis-acids and to coordinate donors such as chloride or bromide anions in a chelating manner (2, 3). The analogous reaction of the corresponding silicon-centered dialkyne with two equivalents of dimethylaluminum hydride gave a mixture of unknown compounds. Interestingly, equimolar quantities of the hydride and the dialkyne resulted in dismutation and the formation of the unprecedented compound MeAl[C(CH–Ph)–SiPh2–CC–Ph]2 (4). Compound 4 has two alkenyl groups bonded to the central aluminum atom and a terminal alkynyl group attached to each silicon atom. An attempt to reduce the remaining triple bonds by reaction with di(tert-butyl)aluminum hydride resulted in cleavage and isolation of the monoalkenyl compound tBu2Al–C[C(H)–Ph]–SiPh2–CC–Ph (5). The molecular structure of 5 showed a close interaction between the α-carbon atom of the triple bond and the coordinatively unsaturated aluminum atom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.