Abstract
Hydrosilanes and Lewis bases are known to promote various reductive defunctionalizations, rearrangements, and silylation reactions, facilitated by enigmatic silicon/Lewis base‐derived reactive intermediates. Despite the wide variety of transformations enabled by this reagent combination, no examples of intermolecular C(sp3)–C(sp3) forming reactions have been reported. In this work, we’ve identified 1,1,3,3‐tetramethyldisiloxane (TMDSO) and KOtBu as a unique reagent combination capable of generating benzylic nucleophiles in‐situ from styrene derivatives, which can subsequently react with alkyl halides to give a new C(sp3)–C(sp3) linkage via formal hydroalkylation. Mechanistic experiments suggest that the reaction proceeds through a key hydrogen atom transfer (HAT) step from a hydrosilane reducing agent to styrene, affording a benzylic radical that undergoes reductive radical polar crossover (RRPC) and subsequent SN2 alkylation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.