Abstract

In this paper, the authors develop a model and technique for solving the combined hydro and thermal unit commitment problem, taking into full account the hydro unit dynamic constraints in achieving overall economy of power system operation. The combined hydrothermal unit commitment problem is solved by a decomposition and coordination approach. Thermal unit commitment is solved using a conventional Lagrangian relaxation technique. The hydro system is divided into watersheds, which are further broken down into reservoirs. The watersheds are optimized by network flow programming (NFP). Priority-list-based dynamic programming is used to solve the hydro unit commitment (HUC) problem at the reservoir level. A successive approximation method is used for updating the marginal water values (Lagrange multipliers) to improve the hydro unit commitment convergence, due to the large size and multiple couplings of water conservation constraints. The integration of the hydro unit commitment into the existing hydro-thermal optimization (HTO) package greatly improves the quality of its solution in the PG&E power system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call