Abstract

The article presents a mathematical model of an hydro turbine speed control system. In the world and domestic practice of creating hydraulic turbine equipment, there is a clear tendency to create computer-based rotor speed control systems for hydraulic turbines. Computer systems provide an opportunity to implement the introduction of effective algorithms using software that improve the static and dynamic characteristics of the system. This in turn increases the importance of mathematical modeling both at the design stage and during commissioning. The analysis of the performed works devoted to the mathematical description of the elements of the hydraulic drive of the regulator showed that they are reduced to linearized equations without taking into account a number of important factors that will increase the accuracy of the mathematical model. Improvement of static and dynamic characteristics and the system as a whole can be achieved by solving the scientific problem of studying its dynamics based on the development of a more complete mathematical model. To reduce friction and hysteresis, to prevent obliteration, the electrohydraulic converter plunger in the lower part is equipped with a segner wheel. Improving the dynamic characteristics of hydraulic turbine speed controllers requires the development of nonlinear mathematical models with subsequent analysis of transients in the hydraulic drive of the speed controller. Evaluation of the quality of transient processes and subsequent adjustment of parameters allows to achieve a reduction in the duration of transients, increase the speed and accuracy of positioning at small movements of the servo motor. A number of unaccounted factors during the preparation of the mathematical model of the electro-hydraulic converter makes it possible to increase its adequacy to the real object of study and increase the speed of the control system of the rotor speed of the hydraulic turbine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.