Abstract

Numerical fish-habitat modelling on various scales is considered to be state of the art in river management. However, most of the concepts applied use steady-state hydraulic parameters such as flow velocity and water depth. Herein we present analysis and discussion of the possibility of including a drift-feeding parameter (SIF) into habitat evaluations based on multiplying suitability indices. “Sources” and “sinks” of benthic drift were identified according to both the zero-crossing and hydraulic-threshold methods in an alpine gravel-bed river. Minor differences could be determined between the two methods in a well-developed riffle–pool section. Macroinvertebrates, used for simulating benthic drift, were collected by multi-habitat sampling and appraised according to their critical threshold (τcr) for motion on the bed surface and sinking velocity (vs). The findings of the calculation of drift rates using one- (1D) and two-dimensional (2D) hydrodynamic numerical models highlight a specification of best feeding position for drift-feeding fish (i.e. brown trout, grayling) considering the SIF parameter. Riffle–pool sequences are characteristic of pristine alpine streams; our findings underline their importance as production (riffles) and consumption areas (pools) in terms of holistic river function. Moreover, the results indicate that (artificial) lateral obstruction (e.g. dams) may lead to a reduced transport rate of benthic organisms due to low bottom shear stress (<0.25 N m−2). Thus, deposition of drifting macroinvertebrates occurs in backwaters, with downstream impacts on benthic and fish communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call