Abstract

AbstractThe coupled Eulerian–Lagrangian (CEL) method implemented in Abaqus is an established tool for modelling large deformations in numerical geomechanics. As shown in previous work, it can be extended to a hydro‐mechanically coupled scheme by exploiting the similarity of the heat balance equation to the mass balance equation of fluids. However, the distinction between effective and total contact stresses has not been possible in this approach, which hinders its application to problems with interface friction as frictional stresses are calculated based on total normal contact stress. An approach to circumvent this problem is presented in this work. Its relevance is demonstrated by the simulation of vibratory pile driving model tests in water‐saturated sand. The implementation by means of user‐subroutines is available and works for any total‐stress analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.