Abstract

Mixed convection flow in the presence of magnetic field is examined in a lid-driven cavity with wavy bottom surface. The magnetic field is applied in perpendicular direction to the cavity. Moreover, the cavity is heated from top while the bottom surface is taken as a wavy pattern. The vertical walls of the cavity are adiabatic. The governing equations have been solved by using Galerkin weighted residual method of finite element formulation. To uncover the flow patterns and heat transfer mechanisms within the cavity, the results are presented in terms of streamlines and isotherms for different Reynolds number, Grashof number, Hartmann number and number of undulations offered by the wavy bottom surface. Also the effects of these parameters are shown on the Local Nusselt number. It is observed that the wavy lid-driven cavity can be considered as an effective heat transfer mechanism in presence of magnetic field at larger wavy surface amplitudes and low Richardson numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.