Abstract
The objective was to compare the ability of spores of Aspergillus carbonarius to germinate in vitro, in situ on grape skin and grape flesh in relation to temperature (15–40 °C) and different relative humidities (100–85 % RH). Spores were inoculated as a spore suspension (106 spores ml−1) onto the surface of white organic grapes and directly onto cut grape flesh. For comparison, spores were spread plate onto a synthetic grape juice medium (SGM) modified to the equivalent water activity (aw) range of 0.995–0.85. This showed that conidia germinated more rapidly on grape flesh (6 h) followed by that on the SGM medium (9 h) and then grape skin (24 h) under optimal condition of 30–35 °C and 100 % RH. At marginal conditions, such as 15 °C and 85–90 % RH, germination was very slow. The time to 5 % germination was significantly shorter on grape flesh than in vitro on grape medium and slowest on grape skin. This suggests that damaged grapes provide the main method of infection and contamination of grapes and grape products with ochratoxin A (OTA). The combined effect of temperature and RH on conidial germination of A. carbonarius on SGM and grape skin was described by combining Beta and polynomial equations. The equations developed in this work provided a good fit of the biological processes; they could be integrated in a predictive model for infection and OTA prediction in ripening grapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.