Abstract

The hydride formation and its influence on the mechanical performance of hydrided Zircaloy-4 plates containing different hydrogen contents were studied at room temperature. For the unnotched plate samples with the hydrogen contents ranging from 25 to 850wt.ppm, the hydrides exerted an insignificant effect on the tensile strength, while the ductility was severely degraded with increasing hydrogen content. The fracture mode and degree of embrittlement were strongly related to the hydrogen content. When the hydrogen content reached a level of 850wt.ppm, the plate exhibited negligible ductility, resulting in almost completely brittle behavior. For the hydrided notched plate, the tensile stress concentration associated with the notch tip facilitated the hydride accumulation at the region near the notch tip and the premature crack propagation through the hydride fracture during hydriding. The final brittle through-thickness failure for this notched sample was mainly attributed to the formation of a continuous hydride network on the thickness section and the obtained very high hydrogen concentration (estimated to be 1965wt.ppm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.