Abstract

The authors have previously reported thermal desorption spectra of hydrogen obtained from cathodically charged two-phase (Ti{sub 3}Al ({alpha}{sub 2}) + TiAl ({gamma})) titanium aluminides by means of thermal desorption spectroscopy (TDS), in which hydrogen ion current (H{sub 2}{sup +}) corresponding to hydrogen evolution rate during heating was measured by a quadrupole mass spectrometer in an ultra-high vacuum condition. Several accelerated hydrogen evolutions (TDS peak temperatures) have been observed in a series of TDS measurement, and then the authors have suggested that these peaks were dependent on the microstructures ({alpha}{sub 2} and {gamma} phases) as well as dissociation of the hydride phase which formed during cathodic charging. A comparison with the TDS spectra from other series of titanium aluminides, such as a single-phase {gamma} alloy, might give clearer views of the microstructural dependence on hydrogen evolution kinetics. In this paper, hydride formation, hydrogen uptake and hydrogen evolution kinetic of a cathodically charged single-phase {gamma} titanium aluminide are investigated, and these results are compared with the previous ones obtained in two-phase ({alpha}{sub 2} + {gamma}) titanium aluminides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call