Abstract
The overwhelming majority of commercially available chemiluminescence (CL) assays are conducted in the eye-visible region. Herein, a near-infrared (NIR) aqueous CL strategy was proposed with CuInS2@ZnS nanocrystals (CIS@ZnS NCs) as emitters. Hydrazine hydrate (N2H4·H2O) could inject electrons into the conduction band of the CIS@ZnS NCs and simultaneously transformed to the intermediate radical N2H3•. N2H3• reduced dissolved oxygen (O2) to O2-•, while the O2-• could inject holes into the valence band of the CIS@ZnS NCs. The recombination of electrons and holes at Cu+ defects in CIS@ZnS NCs eventually yielded efficient NIR CL at around 824.1 nm, which is the longest waveband for NCs CL to the best of our knowledge. The NIR CL could be conveniently performed in the neutral aqueous medium (pH 7.0) with a quantum yield of 0.0155 Einstein/mol and was successfully employed for constructing a signal-off CL biosensor with ascorbic acid as the analyte as well as a signal-on CL biosensor for determining ascorbate oxidase, which indicates that this NIR CL system has a promising potential for bioassays in diverse ways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.