Abstract

M(NHx ) intermediates involved in N-N bond formation are central to ammonia oxidation (AO) catalysis, an enabling technology to ultimately exploit ammonia (NH3 ) as an alternative fuel source. While homocoupling of a terminal amide species (M-NH2 ) to form hydrazine (N2 H4 ) has been proposed, well-defined examples are without precedent. Herein, we discuss the generation and electronic structure of a NiIII -NH2 species that undergoes bimolecular coupling to generate a NiII 2 (N2 H4 ) complex. This hydrazine adduct can be further oxidized to a structurally unusual Ni2 (N2 H2 ) species; this releases N2 in the presence of NH3 , thus establishing a synthetic cycle for Ni-mediated AO. Distribution of the redox load for H2 N-NH2 formation via NH2 coupling between two metal centers presents an attractive strategy for AO catalysis using Earth-abundant, late first-row metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.