Abstract

Tellurostannates are traditionally prepared by multistep reactions using the tellurides SnTe, SnTe2, K4SnTe4, or A6SnTe6 (A = K, Rb, or Cs) as precursors, which are usually prepared by the molten reaction of alkali metals Sn and Te under harsh synthetic conditions. Differently, ternary Hg-tellurostannate hybrids [Mn(en)3]HgSnTe3(Te2) (1) (en = ethylenediamine), [Mn(dien)2]HgSnTe3(Te2) (2), and [Fe(dien)2]HgSnTe3(Te2) (3) (dien = diethylenetriamine) were synthesized by one-pot reactions using Sn and Te powders as starting materials in the presence of hydrazine under mild solvothermal conditions. In 1, HgTe3 and SnTe4 units are joined via Te-sharing to form a 1-D polymeric chain [HgSnTe3(Te2)]n2n-, while the [HgSnTe3(Te2)]n2n- chains in 2 and 3 are composed of HgTe4 and SnTe4 units. The common feature of the [HgSnTe3(Te2)2-]n chains in 1-3 is that they are constructed by both the telluride anion Te2- and the polytelluride anion Te22-. 1-3 exhibited strong photocurrent responses with current densities of 5.26, 3.38, and 3.94 μA cm-2, respectively. They showed effective photocatalytic activities for methylene blue degradation with degradation ratios in the range of 85.3-94.6% after light irradiation for 80 min. Investigation of the photocatalytic mechanism showed that •O2- radicals and h+ holes were the main active substances in the photodegradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call