Abstract

Abstract Observations from a recent field experiment in the Vema Channel are briefly described. These show a remarkable change in the configuration of isopycnal surfaces within the channel and the development of thick, nearly homogeneous regions near the bottom which are capped by sharp vertical gradients. Contrary to previous speculation that these “bottom boundary layer” result from enhanced vertical mixing, a dynamical mechanism is explored. This involves the hydraulic adjustment of an inertial, semi-geostrophic flow to the channel geometry. First, an active two-layer flow in a rectangular geometry is studied to show that internal flow separation can occur when the flow is accelerated sufficiently by a narrowing channel. Almost always this separation accompanies hydraulic control: the slowest upstream moving Kelvin wave is stopped and upstream and downstream states are not symmetric with respect to the channel width. An active three-layer flow with a variable bottom profile is then presented as a more ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.