Abstract

In this paper, an active compliant revolute joint actuated by hydraulic energy is developed. The joint is made of polymer for integration in medical robotic systems, even in a challenging environment such as Magnetic Resonance Imaging (MRI). The use of multimaterial additive manufacturing allows us to develop two original aspects. First, a new seal design is proposed to build miniature hydraulic cylinders embedded in the active joint, with low level of friction. Second, a rack-and-pinion mechanism is being integrated to a compliant revolute joint to obtain a high level of compactness. Design and experimental assessment of the hydraulic cylinder and the compliant joint with embedded rack-and-pinion are presented, as well as an illustration in the context of needle manipulation with passive teleoperation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.