Abstract

Differences in the seasonal variation in stem water potential between the two shrub species Sorbus aucuparia and Sambucus nigra were related with their vulnerability to xylem cavitation. It was also demonstrated indirectly that the two species differ in the extent to which they reverse cavitation. Seasonal variation in stem water potential was investigated during three growing seasons with in situ stem psychrometers. Sorbus experienced wide water potential variations and reached a minimum of -4.2 MPa during drought. Under the same microclimatic conditions, Sambucus experienced consistent stem water potentials with a minimum of -1.7 MPa. The relationship between percentage loss in hydraulic conductivity (PLC) and water potential (hydraulic vulnerability curve) of the two species differed in shape: a flat curve with nearly total loss of conductivity at -6 MPa was found for SORBUS: Sambucus showed a steep vulnerability curve with 90% loss conductivity at -2.2 MPa. Thus, Sambucus is extremely vulnerable to cavitation, but Sorbus is an almost invulnerable species. This different cavitation resistance adjusted the ranges of field stem water potential that the species experienced. Finally, seasonal courses of naturally occurring (native) embolism were compared with calculated PLC courses. This comparison indicates that Sorbus did not refill embolized xylem vessels whereas Sambucus reversed embolism. It was concluded that species which are highly vulnerable to cavitation and drought-induced embolism need refilling of embolized vessels as well as isohydric water potential patterns as two strategies of survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call