Abstract

Granular matter transported by hydraulic conveying behaves under several transport regimes. The techncal challenge is to predict the dilute or dense regime of transport as well as the pressure drop required in order to design properly a granular hydraulic conveying system. We address this problem with a laboratory scale experimental setup able to reproduce the key features of hydraulic conveying f grains. Pressure drop measurements as well as image analysis have been used to characterize a slug transport regime and its crossover towards a moving bed transport regime. A dimensionless characteristic curves diagram has been established and a reasonably good pressure drop prediction with a generic power law is explained in details. This preliminary work has the potential to open perspectives for the design of a predictive tool for pressure drops in hydraulic conveying systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.