Abstract
Tortuosity (T) is a parameter describing an average elongation of fluid streamlines in a porous medium as compared to free flow. In this paper several methods of calculating this quantity from lengths of individual streamlines are compared and their weak and strong features are discussed. An alternative method is proposed, which enables one to calculate T directly from the fluid velocity field, without the need of determining streamlines, which greatly simplifies determination of tortuosity in complex geometries, including those found in experiments or three-dimensional computer models. Based on numerical results obtained with this method, (a) a relation between the hydraulic tortuosity of an isotropic fibrous medium and the porosity is proposed, (b) a relation between the divergence rate of T with the system size at percolation porosity and the scaling of the most probable traveling length at bond percolation is found, and (c) a range of porosities for which the shape factor is constant is identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.