Abstract

Study regionThe Tonghui River–a treated effluent-affected urban river located in Beijing, China. Study focusInspired by the signal processing theory, this study presented a simulation scheme for the treated effluent-affected river based on hydrologic monitoring, pattern recognization, pattern extraction, and hydrologic/hydraulic modelling. It aimed to precisely depict the river flow patterns when detailed wastewater treatment plant effluent data was absent and to fill in the gap of the application of signal-based hydrological time series processing methods in physically based hydraulic simulation. New hydrological insights for the regionDiurnal and semidiurnal patterns caused by the wastewater treatment plant (WWTP) effluent were recognized from the water level series using the continuous wavelet transform. Due to their small amplitudes, they were masked during flood events but dominated the flow regime in dry seasons. Based on the discrete wavelet decomposition and Fourier series fitting, these periodical patterns were extracted and fitted. With a preliminarily calibrated hydraulic model and a linear signal amplifier, a simulated WWTP effluent was retrieved. Dry seasons simulation utilizing the simulated effluent obtained significantly better performance than using the average effluent data from the aspects of conventional evaluation metrics, cross-wavelet transform, and wavelet coherence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call