Abstract
Abstract By using a simple parameterized model of thermomechanically coupled flow in cold ice sheets, together with a physically based sliding law which includes a description of basal drainage, we show that relationships between ice flux and ice thickness can realistically be multi-valued, and hence that hydraulically induced surges can occur. We term this mechanism hydraulic run-away, as it relies on the positive feed-back between sliding velocity and basal melt production. For this feedback to operate, it is essential that water pressure increases with water storage. This is consistent with various recent ideas concerning drainage, under ice sheets, be it through a system of canals, a distnbuted film or a subglacial aquifer. For confined flows, such as valley glaciers (e.g. Trapridge Glacier) or topographically constrained ice streams (e.g. Hudson Strait in the Laurentide ice sheet), which are underlain by sufficiently deformable sediment, we can expect thermally regulated surges to occur, while in a laterally unconfined drainage basin (such as that which flows into the Ross Ice Shelf), we might expect ice streams to develop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.