Abstract

Governing underground water flow, hydraulic properties such as hydraulic conductivity or coefficient of consolidation are major geotechnical parameters. Determination of hydraulic properties, however, is traditionally time consuming and expensive. This research proposes an easy and economical way of determining the hydraulic properties of soils through piezocone penetration tests. Pore pressure responses of soils from piezocone penetration tests are numerically analyzed herein by the coupled theory of mixtures, which is based on the large strain elastoplasticity. Using the numerical results, the effects of input parameters are evaluated. Simple equations are also derived for a faster estimation of the hydraulic conductivity or the coefficient of consolidation of soils. The hydraulic properties predicted by these derived equations agree reasonably with the measured results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.