Abstract

The water permeability of the apical and basolateral cell membranes and the compliance of the lateral intercellular spaces (LIS) of MDCK monolayers were measured on confluent cultures grown on permeable supports. Cell membrane water permeabilities were determined, using quantitative differential interference light microscopy, from the rate of cell volume decrease after exposure to a hyperosmotic bathing solution. Both membranes exhibited osmotic water permeabilities (POSM) of approximately 10 microm/sec, comparable to that of unmodified lipid bilayers. The compliance of the cell membranes forming the lateral intercellular space (LIS) between cells was determined from the pressure-volume relation. Confocal microscopy of fluorescent labeling of the basolateral cell membranes was used to delineate the LIS geometry as transepithelial hydrostatic pressure was varied. The LIS were poorly deformable as a function of transepithelial hydrostatic pressure until a pressure of >/=8 cm H2O (basolateral > apical) was reached where catastrophic failure of intercellular connections occurred. The compliance of the LIS was calculated from the geometry changes at pressures <8 cm H2O and ranged from 0.05-0.11 cm H2O-1, comparable to that previously predicted in mathematical models of the rat proximal tubule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.