Abstract

Abstract Aiming to achieve energy dissipation and prevention of cavitation erosion, a kind of dropshaft in urban drainage systems called the helical-step dropshaft is introduced in this paper. It dissipates flow energy by means of step geometry and prevents cavitation erosion through air entrainment. To verify its availability, the hydraulic characteristics of the helical-step dropshaft were experimentally investigated, including the flow regimes, the efficiency of energy dissipation, characteristics of air entrainment and pressure distribution. The results demonstrate that, even for a large discharge, flow can be discharged smoothly and steadily, and a high energy-dissipation rate of over 87% is achieved. There are three distinct flow regimes observed in the dropshaft, namely nappe flow, mixed flow and skimming flow. Moreover, there is no less than 1.6% air concentration and a reasonable pressure distribution on the step surface. This study provides an attractive alternative for the design of drop structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call