Abstract

Hydraulic fracturing stress measurements have been made in fifteen boreholes of various depths from 100 to 800 m in the Kanto-Tokai area since 1978. About 90 sets of in-situ stresses have been obtained successfully. The maximum and minimum horizontal compressive stresses increase linearly with depth in each borehole. The difference between the maximum and minimum principal stresses also increases with depth. The increase of stress difference with depth is interpreted in terms of large stress relaxation in shallow parts of the boreholes where low confining pressure and many pre-existing microcracks are dominant. The maximum shear stress at a depth of 400 m ranges from 1 to 8 MPa depending on the site. It is not always the case that the regions of small shear stresses are inactive in microseismicity and crustal movement. This phenomenon is attributed to the relaxation of shear stress at the measured depths and to the regional variation in increasing rate of shear stress. The maximum compressive stress direction is obtained from detection of the fracture azimuth after hydraulic fracturing. Stress direction measured at each borehole agrees well with that estimated from geologic and seismic methods near the measurement site. Several stress provinces where the stress directions appear almost uniform are defined in the Kanto-Tokai area. The regional distribution of the stress directions is understood in terms of the relative movement of three plates, the Philippine Sea, Pacific, and Eurasian plates, which are in contact with each other in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.