Abstract

Hydraulic fracturing is one of the most common methods of well stimulation for reservoirs with low permeability. Hydraulic fracturing increases the flow capacity, alters flow geometry, bypasses damage and improves recovery factor. The pressure of most of Iranian oil reservoirs is declined and consequently the production is reduced. It is necessary to improve the production by using new stimulation techniques, like hydraulic fracturing. In general, hydraulic fracturing treatments are used to increase the production rate, furthermore increasing recovery factor. In such cases, the fracture length is an appropriate optimization design variable against an economic criterion, e.g., the Net Present Value (NPV). This involves the balancing of incremental future revenue against the cost of operation. The production response in economic terms shows the effect of this design parameter. In this paper, a hydraulic fracturing operation has been designed by the simulator FracCADE 5.1 then its impact on production and ultimate recovery has been investigated by ECLIPSE. According to NPV, the hydraulic fracturing schedule was designed to achieve an optimum fracture half-length. The results show that hydraulic fracturing increases oil recovery factor and production rate significantly. According to the NPV diagram, the best fracture half-length for AZ-X well is 1100 feet and for MNS-Y well is 900 feet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call