Abstract

AbstractHot dry rock is becoming an important clean energy source. Enhanced geothermal systems (EGS) hold great promise for the potential to make a contribution to the energy inventory. However, one controversial issue associated with EGS is the impact of induced seismicity. In August 2019, a hydraulic stimulation experiment took place at the hot dry rock site of the Gonghe Basin in Qinghai, China. Earthquakes of different magnitudes of 2 or less occurred during the hydraulic stimulation. Correlations between hydraulic stimulation and seismic risk are still under discussion. Here, we analyze the hydraulic stimulation test and microseismic activity. We quantify the evolution of several parameters to explore the correlations between hydraulic stimulation and induced seismicity, including hydraulic parameters, microseismic events, b‐value and statistical forecasting of event magnitudes. The results show that large‐magnitude microseismic events have an upward trend with an increase of the total fluid volume. The variation of the b‐value with time indicates that the stimulation experiment induces small amounts of seismicity. Forecasted magnitudes of events can guide operational decisions with respect to induced seismicity during hydraulic fracturing operations, thus providing the basis for risk assessment of hot dry rock exploitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call