Abstract
Hydraulic fracture is crucial for assuring well production from unconventional reservoirs. For the optimization of hydraulic fracture geometry and the ensuing production of an interlayered reservoir, vertical hydraulic fracture propagation path has been analyzed. However, an effective fluid channel cannot be formed if the proppant is unable to reach the area where the fracture propagates. This paper presents a numerical model using the lattice-based method to investigate the hydraulic fracture propagation and proppant transport mechanism in interlayered reservoirs. The hydraulic fracture propagation model was simulated under different geological and fracturing engineering factors. The results indicate that interlayer Young’s modulus and horizontal stress anisotropy are positively correlated with longitudinal propagation and proppant carrying ability in interlayered formations. The fracturing injection rate has an optimal solution for fracture propagation and proppant carrying since a too low injection rate is unfavorable for fracture penetration of the interlayer, while a too high injection rate increases fracture width instead of further fracture penetration. In conclusion, attention is drawn to fine particle size proppants used in multi-layer reservoirs for fracturing fluid to carry proppants as far as possible to obtain maximum propped area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.