Abstract

Hydraulic fracture is crucial for assuring well production from unconventional reservoirs. For the optimization of hydraulic fracture geometry and the ensuing production of an interlayered reservoir, vertical hydraulic fracture propagation path has been analyzed. However, an effective fluid channel cannot be formed if the proppant is unable to reach the area where the fracture propagates. This paper presents a numerical model using the lattice-based method to investigate the hydraulic fracture propagation and proppant transport mechanism in interlayered reservoirs. The hydraulic fracture propagation model was simulated under different geological and fracturing engineering factors. The results indicate that interlayer Young’s modulus and horizontal stress anisotropy are positively correlated with longitudinal propagation and proppant carrying ability in interlayered formations. The fracturing injection rate has an optimal solution for fracture propagation and proppant carrying since a too low injection rate is unfavorable for fracture penetration of the interlayer, while a too high injection rate increases fracture width instead of further fracture penetration. In conclusion, attention is drawn to fine particle size proppants used in multi-layer reservoirs for fracturing fluid to carry proppants as far as possible to obtain maximum propped area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call