Abstract

A hydraulic circuit design composed of a pressure-regulating device in conjunction with a spring-loaded flow compensator is shown to be an effective mechanism to improve the pressure control functionality, specifically by minimizing the excursions of pressures experimented in the system and by minimizing the time required by the supply pump to restore pressure. The design stores fluid energy and restores it to a system where fast switching devices control fluid consumption. The effectiveness of the mechanism resides in controlling the back pressure on the pressure regulator and compensator to just below the system pressure. The flow compensator can reduce pressure recovery times by over 60% and minimize pressure drops by 20%. The compensator effectively allows for better pump size optimization and smaller required volumes for added power savings and better packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call