Abstract

Concerned with the hydraulic design of a high specific speed rotodynamic pump impeller for gas-liquid two-phase flow transportation, a combined approach of inverse method and CFD analysis is presented. The two-phase mixture is treated as a pseudo single-phase homogeneous fluid under the design condition, and the geometry of impeller blades is designed for a specified velocity torque distribution on S1 stream surfaces through iterative computations of S1 and S2m stream surfaces. To obtain a favorable pressure distribution and optimize the flow field, the design specifications and parameters are improved based on the 3-D turbulent flow analysis of the pump impeller using the SIMPLEC algorithm. Experimental results demonstrate that the designed pump has an optimum hydraulic efficiency of 44.0% and it can work in a wide range of flow rate and gas volume fraction without the gas blocking phenomenon. The validity and reliability of the present approach is proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.