Abstract

The notion that most xylem transport in stems of ring-porous trees occurs in the outermost growth ring requires experimental support. Significance of this ring is challenged by workers who find tracer dyes appearing in 4 to 8 growth rings rather than in only the outermost increment. We test the hypothesis that the outermost growth ring is of overriding significance in fluid transport through stems of Ulmus, a ring-porous tree. Fluid flow through the outermost ring was quantified by removing that ring, calculating gravity flow rates (hydraulic conductivity at 10.13 kPa m-1 ), and by tracing the transport pathway through control and experimental stem segments. From measurements corroborating theoretical calculations based on Poiseuille's law, over 90% of fluid flow through the stem occurs through the outermost ring. Remaining rings combine to account for less than 10% of xylem transport. As a result of dependence upon transport in the most superficial xylem, ring-porous trees such as elm, oak, ash, and chestnut are particularly susceptible to xylem pathogens entering from the bark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.