Abstract
Kozeny's equation based on a capillary tube model with constant viscosity does not give satisfactory results for fine-grained soils. When surface forces dominate over gravity forces, the pore water behaves abnormally and the physical properties of this pore water are found to be quite different from free water. Flow through saturated fine-grained soils is known to be affected by the properties and thickness of loosely and strongly bound water, whose viscosity is observed to be higher because of the modified water structure induced by clay-water interaction. An analytical solution based on a capillary tube model taking into account the changed viscosity of bound water and variation of viscosity within the bound water in relation to its thickness is attempted. The derived equation appears to be general in nature and is applicable for both surface active and inactive soils. It is shown that Kozeny's equation turns out to be the particular case of the derived equation when the thickness of the bound water is zero or when the variation of viscosity is not taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.