Abstract

Abstract The present study identifies the hydraulic efficiency of a novel onsite sanitation system at variable hydraulic shock loading conditions. The system consisted of three chambers, each working as an up-flow anaerobic bioreactor, accommodated within a single unit. The hydraulic characteristics were identified with the help of residence time distribution (RTD) analysis by step feeding of lithium chloride (LiCl) solution into the system. The experiments were run at variable hydraulic loading conditions at different peak flow factors (PFF) of 1, 2, 4 and 6 while maintaining 24-h hydraulic retention time. As revealed in the RTD analysis, the biofilm reactor achieved a very good hydraulic efficiency that varied from 0.76 to 0.81 at PFF 1, 2 and 4. Although in the case of PFF6, it was comparatively low. It was noted that the dispersion number was always below 0.2 at variable hydraulic shock loading conditions under different PFFs, which indicated that the reactor behaved perfectly between mixed-flow and plug-flow reactor. The system was also able to achieve good pollutant removal efficiency for chemical oxygen demand (COD) and total suspended solids (TSS) under all PFFs, which was more than 68 and 75%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.