Abstract
This work theoretically studies the effects of wall velocity slip on the hydraulic resistance and convective heat transfer of laminar flow in a microchannel network with symmetric fractal treelike branching layout. It is found that the slip can reduce the hydraulic resistance and enhance the Nusselt number of laminar flow in the network; furthermore, the slip can also affect the optimal structure of the fractal treelike microchannel network with minimum hydraulic resistance and maximum convective heat transfer. Under the size constraint of constant total channel surface area, the optimal diameter ratio of microchannels at two successive branching levels of the symmetric fractal treelike microchannel network with a minimized hydraulic resistance is only dependent on branching number [Formula: see text] in the manner of [Formula: see text] for no slip condition, but decreases with the increasing slip length, the increasing branching number and the increasing length ratio of microchannels at two successive branching levels for slip condition. The convective heat transfer of the treelike microchannel network is independent on the diameter ratio for no slip condition, but displays an increasing after decreasing trend with the increasing diameter ratio for slip condition. The symmetric treelike microchannel network with the worst convective heat transfer performance is the network with diameter ratio equaling one for slip condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.