Abstract

Stormwater runoff from urban areas has multiple negative hydrologic and ecological impacts for receiving waters. Fine media stormwater filtration systems have the potential to mitigate these effects, through flow attenuation and pollutant removal. This work provides an overall assessment of the hydraulic and pollutant removal behavior of sand- and soil-based stormwater filters at the laboratory scale. The influence of time, cumulative inflow sediment, cumulative water volume, wetting and drying, and compaction on hydraulic capacity was investigated. The results suggested that the primary cause of hydraulic failure was formation of a clogging layer at the filter surface. Loads of sediment and heavy metals were effectively retained; however,the soil-based filters leached nitrogen and phosphorus for the duration of the experimental period. Media pollutant profiles revealed significant accumulation of all pollutants in the top 20% of the filter profile, suggesting that elevated discharges of nutrients was due to leaching of native material, rather than failure to remove incoming pollutants. It is recommended that the top 2-5 cm of the filter surface be scraped off every two years to prevent hydraulic failure; this will also avoid excessive accumulation of heavy metals, which may otherwise have been of concern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.