Abstract

Base pairing complementarity is central to DNA function. G·C and A·T pair specificity is thought to originate from the different number of hydrogen bonds the pairs make. Quantifying how many hydrogen bonds exist can be difficult because water molecules in the surrounding can make up for or disrupt direct hydrogen bonds, and the hydration structures around A·T and G·C pairs on duplex DNA are distinct. Large-scale computer simulations have been used here to create a detailed map for the hydration structure on A·T and G·C base pairs in water. The contributions of specific hydration waters to the free energy of each of the hydrogen bonds in the A·T and G·C pairs were computed. Using the equilibrium fractions of hydrated versus unhydrated states from the hydration profiles, the impact of specific bound waters on each hydrogen bond can be uniquely quantified using a thermodynamic construction. The findings suggest that hydration water in the minor groove of an A·T pair can provide up to about 2 kcal/mol of free energy advantage, effectively making up for the missing third hydrogen bond in the A·T pair compared to G·C, rendering the intrinsic thermodynamic stability of the A·T pair almost synonymous with G·C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call