Abstract

Solid-liquid interfaces are of significant importance in a multitude of geochemical and technological fields. More specifically, the solvation structure plays a decisive role in the properties of the interfaces. Atomic force microscopy (AFM) has been used to resolve the interfacial hydration structure in the presence and absence of ions. Despite many studies investigating the calcite-water interface, the impact of ions on the hydration structure at this interface has rarely been studied. Here, we investigate the calcite-water interface at various concentrations (ranging from 0 to 5 M) of rubidium chloride (RbCl) using three-dimensional atomic force microscopy (3D AFM). We present molecularly resolved images of the hydration structure at the interface. Interestingly, the characteristic pattern of the hydration structure appears similar regardless of the RbCl concentration. The presence of the ions is detected in an indirect manner by more frequent contrast changes and slice displacements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.