Abstract

AbstractThe harm caused by mine tailings has become increasingly problematic in recent years, so efforts are needed to dispose of or reutilize them in environmentally friendly ways. The objective of the present study was to find out if the hydration properties of muscovite contained in mine tailings are suitable for it to be used as a pozzolan in cement, after undergoing mechanical activation. Aqueous suspensions of mechanically activated muscovite were blended with 10, 20, or 30 wt.% calcium oxide and then allowed to harden. The hardened paste samples were analyzed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) techniques. The results revealed that the mechanically activated muscovite exhibited pozzolanic reaction activity in the alkaline environment provided by calcium oxide, and the activated muscovite possessed a capacity to react with calcium hydroxide to form hydration products. The calcium oxide content affected significantly the quantities and kinds of hydration products, non-evaporable water content, and the compressive strength development of the paste samples. The hydration products of the 10% calcium oxide-activated, mechanically activated muscovite pastes were Al-containing hydrated calcium silicate (C-A-S-H) gel, stratlingite, and, upon addition of 20% and 30% calcium oxide, Ca-Al hydrotalcite-like (Ht) phases. The present study was helpful in evaluating the hydration properties of the mechanically activated muscovite and also provided a research basis for evaluating the hydration properties of mine tailings containing muscovite after mechanical activation. The results provided a theoretical basis for muscovite-containing mine tailings to be used as a cement additive, and was conducive to the large-scale utilization of mine tailings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call