Abstract

Some water molecules in binding sites are important for intermolecular interactions and stability. The way binding site explicit water molecules are dealt with affects the diversity and nature of designed ligand chemical structures and properties. The strategies commonly employed frequently assume that a gain in binding affinity will be achieved by their targeting or neglect. However, in the present work, 2332 high-resolution X-ray crystal structures of hydrated and nonhydrated, drug and nondrug compounds in biomolecular complexes with reported Ki or Kd show that compounds that use tightly bound, bridging water molecules are as potent as those that do not. The distribution of their energies, physicochemical properties, and ligand efficiency indices were compared for statistical significance, and the results were confirmed using 2000 permutation runs. Ligand cases were also split into agonists and antagonists, and crystal structure pairs with differing tightly bound water molecules were also compared. In addition, agonists and antagonists that use tightly bound water bridges are smaller, less lipophilic, and less planar; have deeper ligand efficiency indices; and in general, possess better physicochemical properties for further development. Therefore, tightly bound, bridging water molecules may in some cases be replaced and targeted as a strategy, though sometimes keeping them as bridges may be better from a pharmacodynamic perspective. The results suggest general indications on tightly hydrated and nontightly hydrated compounds in binding sites and practical considerations to adopt a strategy in drug and molecular design when faced with this special type of water molecules. There are also benefits of lower log P and better developability for tightly hydrated compounds, while stronger potency is not always required or beneficial. The hydrated binding site may be one of the many structure conformations available to the receptor, and different ligands will have a different ability to select either hydrated or nonhydrated receptor binding site conformations. Compounds may thus be designed, and if a tightly bound, bridging water molecule is observed in the binding site, attempts to replace it should only be made if the subsequent ligand modification would improve also its ligand efficiency, enthalpy, specificity, and pharmacokinetic properties. If the modification does succeed in replacing the tightly bound, bridging water molecule, it will have at least achieved benefits for ligand optimization and development independently of either positive or negative change in binding affinity outcome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.