Abstract

Water adsorption on Pt( 111) and Ru(001) treated with oxygen, hydrogen chloride and sodium atom at 20 K has been studied by Fourier transform infrared spectroscopy, scanning tunneling microscopy and surface X-ray diffraction. Water molecules chemisorb predominantly on the sites of the electronegative additives, forming hydrogen bonds. Three types of hydration water molecules coordinate to an adsorbed Na atom through an oxygen lone pair. In contrast, water molecules adsorb on electrode surfaces in a simple way in solution. In 1 mM CuSO4 + 0.5 M H2SO4 solution on an Au(111) electrode surface, water molecules coadsorb not only with sulfuric acid anions through hydrogen bonding but also with copper, over wide potential ranges. In the first stage of underpotential deposition (UPD), each anion is accommodated by six copper hexagon (honeycomb) atoms on which water molecules dominate. At any UPD stage water molecules interact with both the copper atom and sulfuric acid anions on the Au(111) surface. Water molecules also coadsorb with CO molecules on the surface of 2 x 2-2CO-Ru(001). All of the hydration water molecules chemisorb weakly on the surfaces. There appears to be a correlation between the orientation of hydrogen bonding water molecules and the electrode potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call