Abstract
Neutron diffraction data with hydrogen isotope substitution on aqueous solutions of NaCl and KCl at concentrations ranging from high dilution to near-saturation are analyzed using the Empirical Potential Structure Refinement technique. Information on both the ion hydration shells and the microscopic structure of the solvent is extracted. Apart from obvious effects due to the different radii of the three ions investigated, it is found that water molecules in the hydration shell of K+ are orientationally more disordered than those hydrating a Na+ ion and are inclined to orient their dipole moments tangentially to the hydration sphere. Cl- ions form instead hydrogen-bonded bridges with water molecules and are readily accommodated into the H-bond network of water. The results are used to show that concepts such as structure maker/breaker, largely based on thermodynamic data, are not helpful in understanding how these ions interact with water at the molecular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.