Abstract
Abstract Recent studies have detected structurally bound water in the refractory silicate minerals present in ordinary and enstatite chondrite meteorites. The mechanism for the incorporation of the hydrogen is not well defined. In this paper we quantitatively examine a two-fold process involving the implantation and diffusion of nebular hydrogen ions that is responsible for the hydration of the chondritic minerals. Our simulations show that depending on critical parameters, including the flux of the protons in nebular plasma, retention coefficient, temperature of the silicate minerals, and desorption rate of implanted hydrogen, the implantation of low-energy hydrogen ions can result in equivalent water contents of ∼0.1 wt% in chondritic silicates within 10 years. Thus, this novel mechanism operating in the nebula at 10−3 bar pressure and <650 K temperatures can efficiently hydrate the free-floating chondritic minerals prior to the rapid formation of planetesimals inside the snow line, and agree well with the wet accretion scenario for the inner solar system objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Astrophysical Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.