Abstract

The residence times of the hydration water molecules near the base protons of d-(GTGGAATTCCAC)2 and d-(GTGGTTAACCAC)2 were investigated by nuclear magnetic resonance (NMR) spectroscopy. Nuclear Overhauser effects (NOE) were observed between base protons of the DNA and hydration water in NOESY and ROESY experiments. Large positive NOESY cross peaks observed between the resonances of the water and the adenine 2H protons of the central d-(AATT)2 segment in the duplex d-(GTGGAATTCCAC)2 indicate the presence of a 'spine of hydration' with water molecules exhibiting residence times on the DNA longer than 1 nanosecond. In contrast, no positive intermolecular NOESY cross peaks were detected in the d-(TTAA)2 segment of the duplex d-(GTGGTTAACCAC)2, indicating that no water molecules bound with similarly long residence times occur in the minor groove of this fragment. These results can be correlated with the larger width of the minor groove in d-(TTAA)2 segments as compared to that in d-(AATT)2 segments, as observed previously in single crystal structures of related oligonucleotide duplexes in B type conformation. The present experiments confirm earlier experimental results from single crystal studies and theoretical predictions that a 5'-dTA-3' step in the nucleotide sequence interrupts the spine of hydration in the minor groove.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.