Abstract

The chemistry of divalent lanthanides, Ln2+ , is a growing sub-field of heavy element chemistry owing to new synthetic approaches. However, some theoretical aspects of these unusual cations are currently underdeveloped, especially as they relate to their dynamic properties in solution. In this work, we address the hydration of two of the classical Ln2+ cations, Sm2+ and Eu2+ , using atomic multipole optimized energetic for biomolecular applications (AMOEBA) force fields. These cations have not been parameterized to date with AMOEBA, and few studies are available because of their instability with respect to oxidation in aqueous media. Coordination numbers (CN's) of 8.2 and 8.1 respectively for Sm2+ and Eu2+ , and 8.8 for both Sm3+ and Eu3+ have been obtained and are in good agreement with the few available AIMD and X-ray absorption fine structures studies. The decreased CN of Ln2+ compared with Ln3+ arises from progressive water exchange events that indicates the gradual stabilization of 8-coordinate structures with respect to 9-coordinate geometries. Moreover, the effects of the chloride counter anions on the coordination of Ln2+ cations have been studied at different chloride concentrations in this work. Lastly, water exchange times of Ln2+ cations have been calculated to provide a comprehensive understanding of the behavior of Eu2+ and Sm2+ in aqueous chloride media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call