Abstract

Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5–1.0, 2–5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0–2); (2) dicalcium silicate (Ca2SiO4) dissolution (days 2–14) and (3) Ca–Si–H and CaCO3 formation and subsequent dissolution (days 14–73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7–0.9) evolved to equal those found within a Ca–Si–H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca–Si–H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca–Si–H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca–Si–H and CaCO3 phases that replace and cover more reactive primary slag phases at particle surfaces.

Highlights

  • Steelmaking slag is an important industrial by-product, with an annual global production of 170–250 million tonnes

  • X-ray diffractometer (XRD) analysis (SI Fig. S2) showed it contains phases structurally matched to larnite, brownmillerite (dicalcium aluminoferrite; Ca2(Al, Fe)2O5), free-lime (CaO) and a Wüstite-like phase (FeO)

  • After 20 min of reaction, the pH of all tests was ≥ 9, the maximum pH value was recorded after ~1 day and the pH value gradually decreased with time

Read more

Summary

Introduction

Steelmaking slag is an important industrial by-product, with an annual global production of 170–250 million tonnes (van Oss 2016). It is produced when CaO (or limestone/dolomite) is added to the steel furnace as a flux that reacts with process impurities (primarily silica) and separates them from the molten steel (Bobicki et al 2012; Eloneva et al 2010). EAF slag has a similar chemical composition to BOF slag, its composition varies slightly with the type of scrap steel used, and it contains similar mineral phases (Tossavainen et al 2007; Yildirim and Prezzi 2011)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call