Abstract

Partial replacement and co-hydration of calcium aluminate cement (CAC) with ladle slag was investigated in this study as a pathway in valorizing the slag and reducing the economic cost of CAC. The impact of this replacement on the physical and microstructural properties were analysed using different techniques such as mechanical strength test, freeze-thaw, sulfate attack, XRD, SEM etc. Thermodynamic modelling was used to predict the phase assemblages of the blended cement using the hydration kinetics of the system. Experimental results showed the reference CAC mortar and the substituted mortar exhibited comparable strength gain at 7 and 28 days, and durability as measured by sulfate attack, abrasion, and freeze-thaw resistance. A low water-to-binder ratio (0.35) lessened the effect of conversion on the hydrates, as XRD showed metastable CAH10 and C2AH7.5 as the hydrates at 7, 28 and 60 days. This however can convert later to the thermodynamically stable phase C3AH6. Thermodynamic modelling suggests these two metastable phases as major binding phases, while Si-hydrogarnet and FeOOH appeared a minor trace in the binder.*Cement chemistry notation used, where C = CaO, A = Al2O3 and H = H2O

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.