Abstract
In this investigation, calorimetry, quantitative X-ray diffraction analysis and the scanning electron microscopy were applied to explore the mechanism of hydration modification of cement with diethanol-isopropanolamine (DEIPA). It showed that the addition of DEIPA favoured the strength development on 3 and 28 days, but was undesirable for the 1d strength. The reason for this was that the dissolution of intermediate phase being promoted by DEIPA participated in the aluminate reaction interrupting the normal hydration of C3S. Appropriate adjustment on SO3 content in the cement was able to slow down the rate of aluminate reaction allowing C3S to react in a right fashion, which gave an optimum strength enhancement at early ages. The addition of DEIPA also impacted the formation of hydrates. Significant differences can be recognized in quantities, chemical compositions and the morphologies of hydrates in blank sample and the DEIPA-dosing ones. With the help of SO3 adjustment in cement with DEIPA, a great number of hydro-sulfoaluminates precipitated at the early stage of hydration to decrease the porosity of hardened cement pastes, which contributed to the strength gain of cement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.