Abstract

Macromolecules, which adsorb or intrinsically form boundary layers at surfaces sliding past each other in aqueous media, are ubiquitous both in technology and in biological systems and can form effective boundary lubricants. Over the past decade or so, hydration layers—robustly bound water molecules that surround charges or zwitterionic groups of different macromolecular species—have been identified as remarkable lubricating elements, sustaining high loads while exhibiting a fluid-like response to shear with extremely low friction. This modification of frictional forces in aqueous systems, based on the behavior of water molecules confined to hydration shells, is the central idea behind the hydration lubrication mechanism, which is presented and discussed in detail in the current Perspective. We describe the nature of hydration under confinement and the underlying experiments revealing this mechanism, focusing in particular on synthetic and biological macromolecules attached to surfaces and on phospholipid...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.