Abstract
A new equation is suggested to define the temperature dependence of the Gibbs energy of hydration of hydrophobic substances: ΔG 0 = b 0 + b 1 T + b 2lnT. According to this equation, the hydration heat capacity is in inverse proportion to temperature. Consistent values of hydration heat capacity of nonpolar solutes have been obtained for different temperatures using data on solubility and dissolution enthalpy. The contributions of the hydrocarbon radicals and OH group to the heat capacity of hydration of the compounds were found for the temperature range 248–373 K. The hydration heat capacity of the hydroxyl group has a weak dependence on temperature and increases by only 12 J/(mol·K) in the specified temperature interval. Changes in the hydration entropy of hydrophobic and OH groups are calculated for the temperature increasing from 248 K to 373 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.